Spatially coupled larval supply of marine predators and their prey alters the predictions of metapopulation models.
نویسنده
چکیده
Oceanographic forces can strongly affect the movement of planktonic marine larvae, often producing predictable spatial patterns of larval delivery. In particular, recent empirical evidence suggests that in some coastal systems, certain locations consistently receive higher (or lower) larval supplies of both predators and their prey. As a consequence, rates of settlement and predation may be coupled spatially, a phenomenon I term the "coupled settlement effect." To investigate the metapopulation consequences of this phenomenon, I created discrete-time, patch-based analytical and simulation models with a common larval pool and uneven larval supply among patches. Using two complementary measures of subpopulation value as a basis of comparison, I found that models with and without the coupled settlement effect yielded strikingly different predictions. When prey and predator larval supplies were not coupled, patches supplied with a larger proportion of the larval pool made a greater contribution to the metapopulation. When settlement of prey and predator was strongly coupled, however, the opposite was true: subpopulations with lower rates of larval supply (above some minimum) were more essential to metapopulation persistence. These considerations could facilitate more effective selection of sites for protection in marine reserves.
منابع مشابه
Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies
Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), ...
متن کاملStabilization through spatial pattern formation in metapopulations with long-range dispersal
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the sta...
متن کاملEffects of habitat destruction and resource supplementation in a predator-prey metapopulation model.
We developed a mean field, metapopulation model to study the consequences of habitat destruction on a predator-prey interaction. The model complements and extends earlier work published by Bascompte and Solé (1998, J. theor. Biol.195, 383-393) in that it also permits use of alternative prey (i.e., resource supplementation) by predators. The current model is stable whenever coexistence occurs, w...
متن کاملThe dynamics of two diffusively coupled predator-prey populations.
I analyze the dynamics of predator and prey populations living in two patches. Within a patch the prey grow logistically and the predators have a Holling type II functional response. The two patches are coupled through predator migration. The system can be interpreted as a simple predator-prey metapopulation or as a spatially explicit predator-prey system. Asynchronous local dynamics are presum...
متن کاملIdentifying critical regions in small-world marine metapopulations.
The precarious state of many nearshore marine ecosystems has prompted the use of marine protected areas as a tool for management and conservation. However, there remains substantial debate over their design and, in particular, how to best account for the spatial dynamics of nearshore marine species. Many commercially important nearshore marine species are sedentary as adults, with limited home ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American naturalist
دوره 171 5 شماره
صفحات -
تاریخ انتشار 2008